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1. Introduction and statement of results

The AdS/CFT correspondence is believed to apply to stacks of Dp-branes for arbitrary

p [1]. The non-conformality of the Dp-brane backgrounds, being welcome for the physics,

introduces a host of technical difficulties. On the side of the boundary theory, the identifi-

cation as a “bona fide” QFT works only within some energy windows. Still a lot of physics

has been extracted from such an effective description. For example, for p > 3, wrapping

some internal world-volume directions of the brane along a small enough compact mani-

fold has become an industry for modelling supersymmetric versions of QCD, starting with

D4-branes in [2], D5-branes in [3] and D6-branes in [4].

The UV completion of these theories gives in most cases an elusive object. On the

gravity side, this translates into the absence, so far, of a full fledged holographic renormal-

ization program, as complete as the one developed for asymptotically AdS metrics (see [5]

and references therein). In the case of Dp-branes, the metric in the decoupling limit is only

conformal to AdSp+2. Still a minimally modified set of counterterms was proposed in [6] to

renormalize the on-shell boundary action. This, by itself, sets the thermodynamics under

control and allows for the computation of the energy-momentum tensor, which matches

the one obtained from the asymptotically flat completion [7]. In this paper we will see

that such counterterms are also enough to obtain the shear viscosity from the two point

function of the energy-momentum tensor. A full construction of the renormalized action
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is clearly beyond the scope of this note, and should presumably proceed along the lines

investigated in [8].

In this paper we will study the transport coefficients of the dual plasma in the universal

hydrodynamic regime. This implies that all time and length scales have to be very large as

compared to the microscopic correlation lenghts, which are set by the inverse temperature

T−1. Having control over the thermodynamics gives already information about the speed

of sound v2
s = ∂P/∂ǫ. The following expression

v2
s =

5 − p

9 − p
(1.1)

albeit evident from the form of the renormalized energy-momentum tensor [6, 7], was to our

knowledge first written in [9]. It signals the onset of a tachyonic instability that in the dual

field theory corresponds to the fact that for p > 5 the specific heat becomes negative [10].

Among other results in this paper, we will recover (1.1) from the pole structure of

retarded correlators of the energy-momentum tensor. The implementation of this program

in the context of AdS/CFT correspondence was initiated in [11, 12] and we will make use

of the clean formulation advocated in [13] that neatly explains how to obtain the relevant

dispersion relations from gauge invariant fluctuations of the supergravity fields. The key

observation is the fact that the relevant boundary conditions for the fluctuations are the

same as the so called quasi-normal modes in the context of black hole perturbation analysis.

Quasinormal modes for p-branes have been studied in the past, albeit in different context.

In [14, 15] the emphasis was on the thermalization properties of the dual plasma. In [16]

the aim was to investigate the decay of probe-branes in a thermal AdS background.

In contrast, hydrodynamics is related to the long wavelength/frequency limit of pertur-

bations, hence to the lowest such quasinormal modes. Symmetry analysis allows to catalog

the fluctuations in three decoupled channels. In two of them, so called shear and sound

channels, the general formalism predicts the appearance of poles of the following form

shear channel → ω = − iη

ǫ + P
q2, (1.2)

sound channel → ω = vsq − i
η

ǫ + P

(

p − 1

p
+

ζ

2η

)

q2 + · · · (1.3)

Microscopically, such dispersion relations turn into poles of the retarded two point functions

of certain components of the energy-momentum tensor. The relevant two point functions

were precisely identified in [13] with fluctuations of the background metric that transform

respectively as a vector and a scalar under the little group SO(p − 1) (resp. shear and

sound channels). As we will show below, the dispersion relations allow to recover both the

speed of sound given in (1.1) as well as the shear and bulk viscosities. The results are best

expressed in terms of the following quotients

η

s
=

1

4π
,

ζ

η
=

2(3 − p)2

p(9 − p)
. (1.4)

The famous equation on the left hand side was first obtained in [17] both in the context of

the membrane paradigm and in the AdS/CFT formalism by relating the shear viscosity with
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the diffusion of the R-current. Just for completeness, we add here a genuinely gravitational

computation.

Also following an observation of [18] we notice that from equations (1.2) and (1.3) the

relation
ζ

η
= −2

(

v2
s − 1

p

)

(1.5)

holds exactly true for all values of p. We will have more to say about this equation in the

conclusions.

The paper is organized as follows. In section 2 we shall establish the reduced model

in the p + 2 dimensional bulk, and argue that it only contains a scalar field in addition to

the metric. In the next section we shall examine the fluctuations and obtain the transport

coefficients announced in this introduction. We add a short section which starts by raising

the question about the correct choice of conformal frame. Unfortunately, the final results

for the transport coefficients exhibit no dependence on the frame, and thus, shed no further

light into the question. The paper closes with some concluding remarks and comparison

with related results in the literature.

2. Consistent reduction and thermodynamics

In the Einstein frame, the relevant supergravity field profiles that correspond to the decou-

pling limit of a stack of Dp-branes read as follows

ds2
10 = G

(10)
MNdxMdxN (2.1)

= H− 7−p

8 (r)(−f(r)dt2 + dx2
1 + · · · + dx2

p) + H
p+1
8 (r)

(

dr2

f(r)
+ r2dΩ2

8−p

)

,

eφ(r) = H(r)
3−p

4 , (2.2)

F(8−p) =
7 − p

L
ωS8−p

, (2.3)

where H(r) = (L/r)7−p, f(r) = 1 − (r0/r)
7−p , and dΩ2

8−p stands for the metric of a 8 − p

sphere of unit radius. This solution is obtained from a type II supergravity lagrangian

where, keeping only the relevant degrees of freedoms, we have

SII =
1

16πG10

∫

d10x
√
−G

[

R(G) − 1

2
∂Mφ∂Mφ − 1

2n!
eaφF 2

(8−p)

]

, (2.4)

with a = (3 − p)/2 (i.e. we are considering magnetically charged branes). Consider the

following ansatz for a dimensional reduction

ds2
10 = e

−
2(8−p)

p
B(r)

gµν(x)dxµdxν + e2B(r)L2dΩ2
8−p (2.5)

= e−
2(8−p)

p
B(r)

(

−c2
T (r)dt2 + c2

X(r)

p
∑

i=1

dx2
i + c2

R(r)dr2

)

+ e2B(r)L2dΩ2
8−p,

where gµν , µ, ν = 0, 1, . . . , p stands for the metric in the p + 2 dimensional Einstein frame.

Plugging this ansatz into the equations of motion derived from (2.4) one obtains a coupled
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system of differential equations for the metric components cT (r), cX (r) and cR(r), as well

as for the dilaton φ(r) and the breathing mode B(r). One can then check easily that the

following identification yields a consistent reduction

B(r) = − 3 − p

4(7 − p)
φ(r) . (2.6)

By this we mean that the equations of motion for B(r) and φ(r), and perturbations thereof,

become identical. Therefore, from here on we shall work within this truncation. The

effective system in p + 2 spacetime is governed by a system of equations that can be

derived from the following action [19]

Ibulk =
1

16πGp+2

∫

dp+2x
√−g

(

R(g) − β

2
∂µφ∂µφ − P(φ)

)

, (2.7)

with
1

Gp+2
=

2π
9−p

2 L8−p

Γ
(

9−p
2

)

G10

,

where P(φ) is the effective potential for the dilaton, and we have not bothered to normalize

the field φ canonically

P(φ) = −(7 − p)(p − 9)

2L2
e

4(3−p)
p(7−p)

φ(r)
, β =

8(9 − p)

p(7 − p)2
. (2.8)

The effective equations of motion

Rµν(g) =
β

2
∂µφ∂νφ +

1

p
gµνP(φ), (2.9)

¤φ =
P ′(φ)

β
, (2.10)

are satisfied by the background profiles (setting ls = 1)

c2
T (r) =

( r

L

)
9−p

p
f(r), c2

X(r) =
( r

L

)
9−p

p
, c2

R(r) =
1

f(r)

( r

L

)
p2

−8p+9
p

, (2.11)

as well as

φ(r) = −(3 − p)(7 − p)

4
log

( r

L

)

, (2.12)

from where the Hawking temperature and entropy density come straight

T =
7 − p

4πr0

(r0

L

)(7−p)/2
, s =

1

4Gp+2

(r0

L

)(9−p)/2
. (2.13)

If desired, using the AdS/CFT dictionary, it is straightforward to translate the entropy

density into field theoretical quantities, involving the rank N , the temperature T , and the

gauge coupling λ = Ng2
YM = (2π)p−2gsl

p−3
s

s ∼ N2λ
−

3−p

5−p T
9−p

5−p . (2.14)
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3. Fluctuations in the hydrodynamic regime

Let us consider fluctuations of the bulk fields gµν → gµν + δgµν , φ → φ + δφ, and focus on

a single Fourier component that propagates along the coordinate z = xp

δgµν(t, z, r) = e−i(ωt−qz)hµν(r), (3.1)

δφ(t, z, r) = e−i(ωt−qz)ϕ(r). (3.2)

Standard analysis proceeds by grouping the fluctuations into three irreducible channels

according to their helicity s under the little group SO(p − 1) [11]

s = 0 → sound channel : htt, htz , hzz, hrr, htr, hzr, h, ϕ (3.3)

s = 1 → shear channel : hta, hza, hra (3.4)

s = 2 → scalar channel : hab − δab
h

p − 1
(3.5)

with a, b = 1, . . . , p − 1 and h =
∑

a haa. Let us parametrize fluctuations as usual with

Hµν(r) such as

htt(r) = c2
T Htt(r), (3.6)

hµj(r) = c2
XHµj(r), (3.7)

with hjµ(r) = hµj(r) and j = 1, 2, . . . , p. We have fixed coordinates such that δgµr = 0.

This leaves still a residual gauge freedom under the infinitesimal diffeomorphisms xµ →
xµ + ξµ, δgµν → δgµν − ∇µξν − ∇νξµ and δφ → δφ − ∂µφξµ with ξµ = ξµ(r)e−iωt+iqz

and covariant derivatives taken with respect to the background metric. Rather than fixing

completely the gauge, it is more convenient to switch over to a set of gauge invariant

fluctuations [13]















Z0 = q2 c2
T

c2
X

Htt + 2qωHtz + ω2Hzz +

(

q2 ln′(cT )

ln′(cX)

c2
T

c2
X

− ω2

)

H,

Zϕ = ϕ − φ′

ln′(cX
2(p−1))

Haa,

(3.8)

Z1 = qHta + ωHza, (3.9)

Z2 = Hab , (3.10)

where H = 1
p−1

∑

a Haa. The ODEs obeyed by the fluctuations Hµν can be found in

appendix A. Here we just present the equations for the gauge invariant fluctuations. The

following dimensionless ratios are natural in order to examine the hydrodynamic regime

w =
ω

2πT
, q =

q

2πT
. (3.11)

In each one of the three channels we shall obtain decoupled second order differential equa-

tions that will be solved in the nontrivial lowest order limit when w ≪ 1 and q ≪ 1

with w/q = λ(q), where λ(q) is a function of q analytic at q → 0. The analysis of the
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characteristic exponents near r0 allows us to parametrize our gauge invariant functions as

follows

Zx(r) = f(r)−i w

2 Yx(r), (3.12)

with Yx(r) analytic at r = r0. In this way we are selecting ingoing boundary conditions

at the horizon. Then we only have to solve perturbatively for Yx(r) in the hydrodynamic

limit. The dispersion relation is obtained from imposing Dirichlet boundary conditions [13]

Zx(r)|r=∞ = 0. (3.13)

3.1 Shear channel

Taking a suitable combination of the three equations in section A.2 one obtains the ODE

satisfied by the gauge independent vector fluctuation Z1

Z ′′
1 +

[

(

q2

ω2

c2
T

c2
X

− 1

)−1

ln′

(

c2
X

c2
T

)

+ ln′

(

cp+2
X

cT cR

)]

Z ′
1 + c2

R

(

ω2

c2
T

− q2

c2
X

)

Z1 = 0. (3.14)

Plugging the ingoing ansatz (3.12) we obtain an equation for Y1(r) which can be solved

perturbatively giving in all cases

Z1(r) = CV f(r)−i w

2

(

1 + i
q2

2w
f(r) + O(w, q2)

)

, (3.15)

where CV is an unimportant normalization factor. From here and (3.13) the familiar

dispersion relation follows

w = −i
q2

2
. (3.16)

Restoring ω and q, and comparing with (1.2), gives the expected universal result for η/s

shown in the left hand equation of (1.4).

3.2 Sound channel

In this channel we end up with two scalar fluctuations Zϕ and Z0. They satisfy the following

equations

Z ′′
ϕ+ln′

(

cT cp
X

cR

)

Z ′
ϕ+c2

R

[

ω2

c2
T

− q2

c2
X

− 2(3 − p)

p

(

3−p

9−p
+

φ′

ln′(cX)

2

(7−p)p

)

P
]

Zϕ = 0 (3.17)

Z ′′
0 + F(r)Z ′

0 + G(r)Z0 + H(r)Zϕ = 0 , (3.18)

modulo the background equations of motion. The coefficients in (3.18) are given by

F(r) = ln′

(

cT cp
X

cR

)

− 4 ln′

(

cT

cX

)

+ ξ(r), (3.19)

G(r) = c2
R

(

ω2

c2
T

− q2

c2
X

)

+ 4

[

ln′

(

cT

cX

)]2

− ln′

(

cT

cX

)

ξ(r), (3.20)

H(r) = 8
q2

ω2

(3 − p)

p(p − 7)

cT

c2
X

(

c′T − cT ln′(cX)
)

ξ(r), (3.21)
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with

ξ(r) =
q2(c2

T )′ ln′′(cX)
(ln′(cX))2

(

1 − ln′′(cT ) ln′(cX)
ln′′(cX) ln′(cT )

)

+ 2ω2p(c2
X)′

(

1 − ln′(cT )
ln′(cX)

)

q2c2
T

(

ln′(cT )
ln′(cX)

+ p − 1
)

− ω2pc2
X

. (3.22)

Plugging as before the ingoing ansatz (3.12) and solving perturbatively one finds that the

only non-singular solution to (3.17) is a constant, which we set to zero by the boundary

conditions at infinity. Inserting now Zϕ = 0 into (3.18) and solving perturbatively for Z0

gives

Z0(r) = CSf(r)−i w

2

(

1 − (1 + i4w)q2f(r)

(7 − p)q2 − (9 − p)w2
+ O(w2, q2,wq)

)

. (3.23)

with CS a normalization constant. Imposing the Dirichlet boundary condition (3.13) gives

an expression for w(q) that can be expanded as follows

w =

√

5 − p

9 − p
q − i

2

9 − p
q
2 + · · · (3.24)

Comparing this expression with the dispersion relation (1.3), and using (1.4) we identify

finally

v2
s =

5 − p

9 − p
,

ζ

η
=

2(3 − p)2

p(9 − p)
, (3.25)

as claimed in the introduction.

3.3 Scalar channel

In this subsection, and just for the sake of completeness, we reobtain the shear viscosity

through the Kubo formula. It is little more than an academic exercise, given the general

theorem [20]. However the fact that the metric is not asymptotically AdS makes it worth

to explore this in detail. As usual, the equation satisfied by Z2 = Hab is that of a minimally

coupled scalar

Z ′′
2 + ln′

(

cT cp
X

cR

)

Z ′
2 + c2

R

(

ω2

c2
T

− q2

c2
X

)

Z2 = 0. (3.26)

In the hydrodynamic limit the ingoing solution to (3.26) exhibits no poles and can be

expanded as follows

Z2(ω, r) = f(r)−i w

2 (1 + O(w2, q2)). (3.27)

In this case the standard roundabout invokes the Kubo formula

η = − lim
ω→0

1

ω
Im GR(ω), (3.28)

with GR the retarded correlator of the relevant components of the energy-momentum tensor

GR(ω) = −i

∫

dtdpxeiωtθ(t)〈[Txy(t, ~x), Txy(0,~0)]〉. (3.29)

The evaluation of the retarded correlator calls for the expansion of the renormalized bound-

ary action up to second order in the fluctuation Hµν . Whereas such an object has been rig-

orously constructed for actions possessing asymptotically locally AdSd backgrounds (see [5]
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and references therein), for the case of Dp-branes only partial results are known. In [6]

appropriate counterterms where found on a case by case basis that properly renormalized

the action, giving a renormalized energy-momentum tensor. One can easily see that these

counterterms, with the correct coefficients, are exactly reproduced by the general expresion

given in [21] which we follow here. Let us express the regularized action as

I =
∑

A

IA = Ibulk + IGH + Ict, (3.30)

where Ibulk is as in (2.7), and

IGH =
1

16πGp+2

∫

r=r∞

dp+1x
√

h 2K, Ict =
1

16πGp+2

∫

r=r∞

dp+1x
√

h ( 2W(φ) + · · · ) .

(3.31)

W(φ) is the superpotential, related to the potential P(φ) by the non-linear equation

P(φ) =
2

β
(∂φW(φ))2 − p + 1

p
W(φ)2, (3.32)

whose solution, for P(φ) as in (2.8), is given by

W(φ) =
(9 − p)

2L
e

2(3−p)
p(7−p)

φ(r)
. (3.33)

The dots in (3.31) denote higher curvature invariants on the induced hypersurface. After

expanding I to second order in the (purely time dependent) perturbation

ha
b(t, r) =

∫

dω

2π
e−iωtf(ω)Z2(ω, r), (3.34)

we can cast all contributions in the form of boundary terms δI =
∑

A δIA with

δIA =

∫

dpx
dω

2π
f(ω)f(−ω)FA(ω, r)

∣

∣

∣

∣

∞

r0

(3.35)

and find thereafter

Fbulk =
1

16πGp+2

(

r7−p
0

L8−p

)(

−9 − p

2p

(

r

r0

)7−p

+
9 − p

2p
+ i

3(7 − p)

4
w + . . .

)

,

FGH =
1

16πGp+2

(

r7−p
0

L8−p

)(

(9 − p)(p + 1)

2p

(

r

r0

)7−p

− 9 + p

2p
− i(7 − p)w + . . .

)

,

Fct =
1

16πGp+2

(

r7−p
0

L8−p

)(

−9 − p

2

(

r

r0

)7−p

+
9 − p

4
+ . . .

)

,

where the dots stand for terms of O(r0/r,w
2). Adding up and using the Minkowskian

prescription of [22] we obtain the retarded correlator

GR(ω) = 2F(r)|r=∞ =
1

16πGp+2

(

r7−p
0

L8−p

)

(

5 − p

2
− i

7 − p

2
w

)

. (3.36)
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We see that the counterterm contributes to the real part of the renormalized correlator1.

From (3.36) the shear viscosity can be extracted as usual by means of Kubo formula

η =
1

16π2Gp+2

7 − p

4

r7−p
0

TL8−p
(3.37)

and, using (2.13), again the well known result η/s = 1/4π is recovered.

4. Frame (in)dependence

In the AdS/CFT correspondence, one delicate issue concerns the correct identification of

the bulk field perturbation that couples correctly to the desired boundary operator. We are

interested in perturbing bulk fields that couple exactly to the boundary energy-momentum

tensor. In asymptotically AdS spaces, the energy-momentum tensor couples naturally to

the bulk metric. However, outside the well tested arena of such backgrounds, we are on less

firm grounds. In the case of Dp-branes, the metric is asymptotically conformally AdSp+2

in the Einstein frame2. The conformal factor that asymptotically deviates its profile from

AdS is given by an appropriate power of the function eφ(r) where φ(r) is the dilaton. Hence

we may consider a family of conformally related metrics, parametrized by α ∈ R as follows

gµν = e2αφg(α)
µν . (4.1)

Clearly g
(0)
µν is the Einstein frame metric whose background value is given in (2.11). Another

important case yields the so called “dual frame” [19], and is obtained by tuning α to the

following value

αD = −2(3 − p)

p(7 − p)
,

which sets exactly g
(αD)
µν to the following asymptotically AdSp+2 black hole metric

ds2
(αD) =

( r

L

)5−p
(−f(r)dt2 + d~xpd~xp) +

(

L

r

)2 dr2

f(r)
. (4.2)

In [19], this conformal frame was argued to yield the natural “holographic” bulk metric,

where the AdS/CFT duality should work most transparently. Notice that, in principle,

perturbation of the metric in different frames would couple to different combinations of the

energy-momentum tensor and the “glueball operator” in the boundary field theory. Until

the question among the dual frame and the Einstein frame is settled, the natural way to

proceed is to see if indeed the results depend upon the choice of such frame. We can repeat

the analysis of the paper in terms of the pair (g
(α)
µν , φ) for an arbitrary α. In particular

1Such contribution is essential in order to fulfill Ward identities, and is tipically missed in non-covariant

treatments of the counterterm action. It does not contribute to the coefficient of ω but, to our knowledge,

this is not a general statement when higher curvature counterterms are included.
2Except for p = 5 where it asymptotes to flat M

1,6
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this amounts to replacing gµν = e2αφg
(α)
µν in equations (2.9) and (2.10) . Introducing now

perturbations as follows

g(α)
µν → g(α)

µν + δg(α)
µν , (4.3)

φ → φ + δφ, (4.4)

all the intermediate equations acquire a dependence on α. For example, instead of (3.17)

one gets

Z ′′
ϕ +

(

ln′

(

epαφ cT cp
X

cR

))

Z ′
ϕ (4.5)

+c2
R

[

ω2

c2
T

− q2

c2
X

− 2(3 − p)

p

(

3 − p

9 − p
+

φ′

ln′(cX)

(

2

(7 − p)p
+ α

3 − p

9 − p

))

P
]

Zϕ = 0

and so on. The analysis can be carried along the same lines as in before, and in the final

result all the α dependence cancels out exactly. Stated precisely, the expressions given

in (1.1) and (1.4) are frame independent.

5. Conclusions

In this note, we have completed the table of fluid transport coefficients of the non-abelian

quantum plasmas that are dual to the gravitational background of a stack of non-extremal

Dp-branes in the decoupling limit for p = 2, . . . , 6. We have recovered known values for

the speed of sound (1.1) and the quotient of the shear viscosity over the entropy (1.4)

from poles of energy-momentum tensor correlators, as well as from the Kubo formula. The

main new result is the expression for the bulk viscosity given in (1.4), which leads to the

compact relation (1.5). Besides we have clarified some aspects related to the holographic

renormalization and the frame dependence of the metric.

Let us comment and compare with partial results obtained in the literature in similar

contexts. In [23], Parnachev and Starinets also investigate the hydrodynamic properties of

thermal “little string theory” (LST), which is dual to a stack of black NS5-branes. Their

results can be seen to agree with ours for p = 5, reflecting the fact that viscosity (as it

happens with the entropy) is an S-duality invariant.

In reference [18], Benincasa and Buchel consider the background of a stack of D4-

branes with one compactified dimension. This seemingly complicated geometry led them to

introduce up to three independent scalar modes. Finally the dispersion relation they obtain

matches precisely our eq. (3.24) with p = 4 3. The disagreement comes from extracting the

3This points to a manifestation of the D4 structure that underlies the construction. However this fact

is less than trivial. One can look at the equations for the fluctuations in [18], and find that they agree with

our equations (both for Hµν in the appendix A, and for Zx in the main text) by setting instead p = 3. Also

the gauge invariant combinations are given by (3.8) with p = 3. This happens because these expressions

are only sensitive to the value of p that appears in the metric ansatz. It is only upon inserting the precise

values of the field profiles, that the authors of [18] use the ones in (2.1) and (2.2) with p = 4. Somehow the

p in the final dispersion relation (3.24) refers to its value in the background profile and loses track of the

form of the metric ansatz.
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bulk viscosity, where the authors of [18], having in mind a three dimensional fluid, use a

parametrization of the dispersion relation which is precisely (1.3) with p = 3. The obtained

value of the bulk viscosity satisfies a relation with the speed of sound which is (1.5) with

p = 3 instead of p = 4. Intrigued by this mismatch we discovered an identity that extends

our equation (1.5) and encompasses also (1.4) of [18]. Namely, one can replace p → d

in (1.3) and solve again for vs and ζ/η by comparison with the dispersion relation (3.24)

while keeping p and d independent

v2
s =

5 − p

9 − p
,

ζ

η
=

8d − 2(9 − p)(d − 1)

d(9 − p)
. (5.1)

With this, one can verify that the following identity holds for any p and d

ζ

η
= −2

(

v2
s − 1

d

)

. (5.2)

Whether this can be ascribed a meaning or happens to be an arithmetic coincidence we

don’t know yet. Anyway, as announced, the results of [18] are recovered exactly by setting

d = 3 and p = 4 in (5.1) and (5.2). Obviously this extension is motivated by the possibility

of defining lower dimensional fluids from higher dimensional UV-field theories (e.g. via

Kaluza-Klein compactification), but notice that it holds as well for d > p. Anyway, the

persistence of an analytic pattern like (1.5), or its generalization (5.2), looks extremely

appealing. The numerical prefactor -2 is not universal (∼ −5 in the background dual to

N = 2∗, [25]), but is the same as in the cascading theory [24]. This unexpected coincidence

for a large amount of different backgrounds certainly deserves further study.
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A. Equations for the fluctuations

Let us give for completeness some of the intermediate equations that were skipped in the

main body of the text for the sake of clarity.

A.1 Sound channel

Here we find a set of 5 second order equations for the fluctuations that enter the gauge
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invariant expressions given in (3.8)

H ′′
tt + ln′

(

c2
T cp

X

cR

)

H ′
tt − ln′(cT )H ′

ii (A.1)

−c2
R

(

ω2

c2
T

Hii +
q2

c2
X

Htt + 2
qω

c2
T

Htz

)

− 2

p
c2
R

∂P
∂φ

ϕ = 0 (A.2)

H ′′
tz + ln′

(

cp+2
X

cT cR

)

H ′
tz +

c2
R

c2
X

qωHaa = 0 (A.3)

H ′′
zz + ln′

(

cT cX
p+1

cR

)

H ′
zz + ln′(cX)(H ′

aa − H ′
tt)

+c2
R

(

ω2

c2
T

Hzz + 2
qω

c2
T

Htz +
q2

c2
X

(Htt − Haa)

)

+
2

p
c2
R

∂P
∂φ

ϕ = 0 (A.4)

H ′′
aa + ln′

(

cT cX
2p−1

cR

)

H ′
aa + ln′(cX

p−1)(H ′
zz − H ′

tt)

+c2
R

(

ω2

c2
T

− q2

c2
X

)

Haa +
2(p − 1)

p
c2
R

∂P
∂φ

ϕ = 0. (A.5)

ϕ′′ + ln′

(

cT cp
X

cR

)

ϕ′ + c2
R

(

ω

c2
T

− q2

c2
X

)

ϕ +
1

2
φ′(Hii − Htt))

′ − 1

β

∂2P
∂φ2

ϕ = 0 (A.6)

Additionaly there are three constraints associated with the gauge fixing condition hµr = 0

H ′
ii + ln′

(

cX

cT

)

Hii +
q

ω
H ′

tz + 2
q

ω
ln′

(

cX

cT

)

Htz + βφ′ϕ = 0 (A.7)

H ′
tt − ln′

(

cX

cT

)

Htt +
ω

q

c2
X

c2
T

H ′
tz − H ′

aa − βφ′ϕ = 0 (A.8)

ln′(cT cX
p−1)H ′

ii − ln′(cX
p)H ′

tt

+c2
R

(

ω2

c2
T

Hii + 2
qω

c2
T

Htz +
q2

c2
X

(Htt − Haa)

)

− βφ′ϕ′ + c2
R

∂P
∂φ

ϕ = 0 (A.9)

It is straightforward to check that together with equations (A.2)-(A.6) this system of 8

equations is not overdetermined, and one can construct easily 3 linear combinations that

vanish identically “on shell” (that is, modulo the equations of motion).

A.2 Shear channel

Here we obtain two second order equations and one constraint

H ′′
ta + ln′

(

cp+2
X

cT cR

)

H ′
ta − q

c2
R

c2
X

(qHtz + ωHza) = 0, (A.10)

H ′′
za + ln′

(

cT cp
X

cR

)

H ′
za + ω

c2
R

c2
T

(qHtz + ωHza) = 0, (A.11)

qH ′
za + ω

c2
X

c2
T

H ′
ta = 0. (A.12)

which are again differentially linearly dependent.
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